Single-cell Deep Learning in Alzheimer’s Disease

Kenny Yi

Introduction / Background

o Alzheimer’s Disease (AD) is the most common form of dementia and the 7th leading cause of death in the United States. In the United

States alone, approximately 6.9 million people currently live with AD, and this is projected to rise to nearly 14 million by 2060.

o Two major challenges to treating AD are the significant heterogeneity in clinical and biological presentation and a limited

understanding of its molecular mechanisms

o Unlike traditional bulk RNA sequencing, single-cell RNA sequencing (scRNA-seq) enables the dissection of complex cellular

environments, providing insights into the diversity of cell types, states, and their contributions to AD pathology.

Model: Single-cell MD-AD (scMD-AD)

o We applied deep neural networks to scRNA-seq measurements by adapting Beebe-Wang et al’'s MD-AD framework for joint learning of

AD classification and cell type classification [1].

o The framework aims to address the challenge of linking molecular heterogeneity to clinical phenotypes, offering a scalable and effective

solution for analyzing high-dimensional single-cell data in AD research and other neurodegenerative diseases.
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Previous Work

o This project builds primarily upon the Multi-task Deep

learning for Alzheimer's Disease neuropathology (MD-AD)
proposed by Beebe-Wang et. al, which utilizes a unified
framework to jointly learn neuropathological measures of AD

from bulk RNA sequencing [1].

o Mathys et. al, used scRNA-seq to profile gene expression of
AD, conducting differential expression and pathway analyses
to investigate associated molecular mechanisms. Findings
were validated using immunohistochemistry and

fluorescence in situ hybridization [3].

Future Directions

o Train and evaluate scMD-AD on larger, more complex
datasets, such as those from the ssREAD database or
the SEA-AD dataset [4, 5]
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o Assess scMD-AD performance across species (e.g.,
mouse models of AD) and across brain regions (e.g.,

prefrontal cortex)

o Incorporating explainable Al techniques, such as the
Integrated Gradients algorithm, to estimate the

importance of input features on the model’s predictions

Results

o scMD-AD achieved a validation loss of 0.6079 at epoch 42, with strong AD
classification performance (0.1030) and effective cell type classification (0.3771).

o MLP converged faster and achieved lower cell type classification loss but likely
will struggle with more complex datasets that require capturing nuanced

relationships between tasks
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Single MLP Loss Plots
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